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SUMMARY 

A generalized formulation is applied to implement the quadratic upstream interpolation (QUICK) scheme, the 
second-order upwind (SOU) scheme and the second-order hybrid scheme (SHYBRID) on non-uniform grids. The 
implementation method is simple. The accuracy and efficiency of these higher-order schemes on non-uniform 
grids are assessed. Three well-known bench mark convection-difhsion problems and a fluid flow problem are 
revisited using non-uniform grids. These are: (1) transport of a scalar tracer by a uniform velocity field; (2) heat 
transport in a recirculating flow; (3) two-dimensional non-linear Burgers equations; and (4) a two-dimensional 
incompressible Navier-Stokes flow which is similar to the classical lid-driven cavity flow. The known exact 
solutions of the last three problems make it possible to thoroughly evaluate accuracies of various uniform and non- 
uniform grids. Higher accuracy is obtained for fewer grid points on non-uniform grids. The order of accuracy of 
the examined schemes is maintained for some tested problems if the distribution of non-uniform grid points is 
properly chosen. 

KEY WORDS higher-order schemes; non-uniform grids; discretization accuracy; finite-volume method 

1. INTRODUCTION 

Balancing accuracy and efficiency concerns in applying computational fluid dynamics (CFD) to 
industry has become the focus of many studies. One of the very important factors affecting prediction 
accuracy is the choice of discretisation schemes for the first-derivative convection schemes. The first- 
order upwind schemes (FOU) and the hybrid scheme as described by Spalding’ were mostly used to 
avoid ‘wiggles’ introduced by the central difference (CD) scheme when the local cell Peclet number is 
larger than some critical value. However, these two schemes introduce excessive so-called numerical 
diffusion (dissipation), which exceeds actual physical diffusion if resolution is not sufficient, A number 
of higher-order upwind (weighted) schemes have been introduced, e.g. second-order upwind (SOU),2 
quadratic-upstream interpolation for convective kinematics (QUICK)3, second-order hybrid scheme 
(SHYBRID),’73’2 and the fifth-order upwind ~ c h e r n e . ~  These schemes have been implemented, 
evaluated and applied in a number of  application^.^-' Most of these studies on Cartesian grids used 
only uniform grids. 

Non-uniform grids (using a finer grid in regions where high gradients of the flow quantity are 
involved) can reach a compromise between accuracy and efficiency. Extension of these schemes to 
non-uniform Cartesian grids is conceptually easy. However, the coefficients can be rather complex. 
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Different forms of the schemes on non-uniform grids can be found in Reference 8 for QUICK and 
Reference 9 for SOU and QUICK. Recently, Arampatzis and Assimacopoulos" developed a non- 
uniform grid version of QUICK based on three-dimensional quadratic interpolation functions in which 
the transverse curvature terms are maintained. The relative accuracy and efficiency of the numerical 
schemes vary among different test problems studied by different authors.'' Thus, it is desirable to 
implement a number of higher-order schemes in a CFD code and to choose an 'optimum' one for a 
particular flow problem. The choice may be made by examining dominant flow features of the problem 
or by experience. Li and RudmanI2 presented a generalized formulation for the four-point 
discretisation schemes on non-uniform grids. The CD, QUICK, SOU and SHYBRID fall within 
this formulation. This facilitates an easy implementation of various schemes in a computer code. The 
transverse curvature terms were not included in the formulation, The formulation will be hrther 
examined and applied in the present work. It should be mentioned that if the locations with high 
gradients of the flow quantity are not known a priori, the non-uniform grids may not be directly used 
and an adaptive grid approach may be used. This is not discussed in this paper. 

One difficulty in implementing higher-order schemes is that the coefficient matrix resulting from the 
finite difference equations may lose its diagonal dominance under conditions of highly convective 
flows. Thakur and ShyyI3 argued that the different implementation of the QUICK scheme may be 
responsible for inconsistent mixed findings in the literature as far as the stability of various 
implementation is concerned. Recent s t u d i e ~ ' ~ ' ' ~ ' ~  showed that the deferred correction procedure of 
Khosla and Rubin" is the most robust and effective way. In this procedure, the standard first-order 
upwind (FOU) scheme is used to obtain the coefficients, which always results in a diagonally dominant 
matrix. The extra deferred correction term of the higher-order schemes is treated explicitly as a source 
term. This approach is adopted here. 

There is a need to assess accuracy of higher-order schemes on non-uniform grids, but little work has 
been done in the literature. On non-uniform grids, many schemes may lose their order of accuracy as is 
observed through truncation error analysis of the Taylor series expansion23. Lack of detailed numerical 
experiments on this aspect gives rise to lack of confidence in using higher-order schemes on non- 
uniform grids. If variations of the dependent variables in the non-uniform grid regions or the aspect 
ratios are small, the loss of accuracy should be minimal. The higher-order schemes can also be 
implemented in a computational space with uniform grids which is transformed from a physical space. 
However, the influence of grid sizes on the accuracy is again introduced by the discretized metric 
coefficients. It should be mentioned that some other schemes such as Hermitian methods and compact 
methods (see review Chapter 4 in Reference 16) can maintain higher-order accuracy on non-uniform 
grids, but additional equations are needed to solve the first and higher derivatives. These schemes are 
not investigated in the present work. Another important aspect of higher-order schemes is the treatment 
of near-boundary points where higher-order schemes cannot be generally applied, since extra grid 
points outside the computational domain are required if the upwind direction is inward from the 
boundary. The first-order upwind scheme (FOU) is often used for the near-boundary points if the four- 
point schemes are used. Theoretically, the application of FOU reduces the accuracy of the higher-order 
scheme in the interior domain. Numerical  experiment^'^'] show this approach can also give accurate 
results. However, some of the present results for a fluid flow problem are not promising. When non- 
uniform grids are used, the situation may be improved by using finer grids near the boundary, and this 
indeed is the conventional practice which resolves the thin regions of large gradients such as boundary 
layers adjacent to solid boundaries. 

The objective of this study is two-fold. 

(i) To implement three higher-order schemes QUICK, SOU and SHYBRID by using the 
generalised form proposed by Li and RudmanI2 for convection-dominated transport equations 
and incompressible Navier-Stokes flows. 
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(ii) 

Four test cases are selected and investigated on various grids. These are: (1) transport of a scalar 
tracer by a uniform velocity field; (2) heat transport in a recirculating flow with exact equation given by 
Beier et aI.' (3) two-dimensional non-linear Burgers equations with exact solutions given by Fletchet" 
and (4) a two-dimensional incompressible Navier-Stokes flow which is similar to the classical lid- 
driven cavity flow with exact solution given by Thakur and Shyy.13 The schemes discussed in this 
paper deal only with incompressible flows, though an extension to compressible flows is not too 
difficult, e.g. by using a FCT flux limiter.12 

To assess accuracy and efficiency of higher-order schemes on non-uniform Cartesian grids. 

2. GENERALIZED FORM OF FOUR HIGHER-ORDER SCHEMES 

The generalized form was proposed by Li and Rudman.12 For completeness, it is reviewed as follows. 
In Figure I ,  the grid-related sizes SiW(i= 1, 2 and 3) take different meanings when the velocity at the 
local face changes its direction. When u, > 0, the variable at the west face, &, can be approximated 
by different schemes. It is easy to show for CD that 

62w 41, 4P 4w + 61, + SZw 4 w  = 
61, + 62w 

In SOU, 4w is extrapolated from Cpw and d-. 
6 3 w  61, 

4ww. 
6 3 w  - 61, 4 w  = 4 w  - 

83w - 81, 
After some algebraic manipulation, equation (2) becomes 

4w + 81, s3w + - 8 2 w  61, 4ww). (3) 
82w + 6 3 w  

63w - 61, 81w (4p - 42w 81, 
4 W  + 4 P  - 61, + 62w 61, + 6ZW 4w = 81, + SZw 

QUICK uses a second-degree polynomial for calculating dW: 
(4) f#lw = a0 + a1 (x - XP) + a2(x - XPNX - xw). 

We have at x = xp, @w = +p; at x = XW, 4w = 4w; at x = XWW, 4w = 4 ~ ;  thus ao, ai and a2 in (4) 
can be determined giving 

4 w  = 4 P  + xw -xp (xw - XP) + xww-XP xw-xxp xww -xw ( 5 )  
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Figure 1 .  Grid system with grid related parameters in the x-direction 
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In terms of hi  we obtain, 

i.e. 
82w 81, ~ l W S 2 W  4 P  - 4w + 61, + 6 2 w  (61, + 82w)(62w + 6 3 w )  

4 w  = 
61, + 6 2 w  

6 2 w  + 8 3 w  4w + ;Iw + ;w (Pww) 
( 4 p  - 6JW - 61, 3w - l w  

(7) 

Equations (l), (3) and (7) can be expressed in the following generalized form, if u, > 0, 

4w = M2w(Pw + M l W 4 P  - q w ( 4 p  - P 2 w 4 w  + P l w 4 W W ) .  (8) 

The geometrical parameters are defined as 

61, 61, + 6 2 w  

8 3 w  - 6 l w ,  
Mlw = 9 P l w  = 

61, + 6 2 w  

6 2 w  6 2 w  + 6 3 w  

6 3 w  - 61,. 
u2w = 1 P 2 w  = 

61, + 6 2 w  
(9) 

The scheme parameters qw take the appropriate forms for different schemes. For CD, q, = 0; for SOU, 
qw = ulw; and for QUICK, 

It can be easily derived, if uw < 0, that 

4, = @ l W 4 W  + E 2 W 4 P  - 4 w ( ( P w  - 8 2 w 4 P  + B l w 4 E ) .  (1 1) 
It should be noted again that in Figure 1, hiWs represent different grid-related sizes when the face 
velocity reverses. 

Equations (8) and (1 1) can be conventionally summarized as 

F w 4 w  = ( u 2 w 4 w  + U l W 4 P  - q w ( 4 p  - P 2 w 4 w  + P l w 4 w w ) ) F :  

+ (Mlw& + W w @ p  - q w ( 4 w  - p 2 w 4 p  + / j l ~ 4 E ) ) ~ ; g  (12) 

where F, = puwA, is the mass flow rate across the face w of the control volume and FW4, is the net 
convection flux, A ,  is the area of face w and p the density. The upwind mass flow rates F,' and F; over 
face w are defined as 

F w  - I F W  I 
2 

FG = F w  + I F w  I 
2 '  

F,' = (13) 

For the east face, 

F e + e  = ( a l e &  + ~ e d p  - q e ( &  - P 2 e 4 ~  + Pie&>)F,' 

+ ( % e 4 E  + u l e 4 P  - q e ( 4 P  - f l 2 e 4 E  + f l l e 4 E E ) ) F i .  

Definitions of grid size parameters die can be found in Figure 1. Geometrical parameters aie and Pie, 

and the scheme parameter qe take a similar form as those in (9) and (12). 
The second-order hybrid scheme (SHYBRID) can be obtained by examining the coefficients of the 

resulting discrete equation without deferred correction, using the generalized form (12) and (14)12. The 
scheme parameter qf (f = e, w, n, s, h and 1) is chosen so that the six neighbour-node coefficients are 
maintained positive. 
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The SHYBRID scheme is considered to reflect more closely the ‘transportive’ property of the partial 
differential equation than CD, QUICK or SOU. The value of the scheme parameter qf is not fixed and 
is adjusted during the solution according to the magnitude of the local Peclet number. When the 
transport is diffusion-dominated, qf is small ( < I/alf), and SHYBRID is effectively the CD scheme. As 
qf increases, the influence of the downstream nodes is reduced by taking into account the upwind 
nodes. When Pef = (&f/& + l)/alf, SHYBRID is equivalent to QUICK. When qf is very large or 
infinity, SHYBRID becomes the SOU scheme. 

3. IMPLEMENTATION FOR CONVECTION-DIFFUSION PROCESS 

In the first three test problems presented later, the two-dimensional transport equations are solved and 
they have the general form: 

where u and v are the velocity components in the x and y directions respectively and y+ is the difision 
coefficient for the dependent variable 4. Equation (16) can be rewritten as 

(17) 
34 a(v4) $4 $4 au -+- ax +-- ay - Y 4 ( s + j p )  +(%+a,)- at 

For the first and second problems, V . V = au/ax + &/?y = 0 and for the third problem, in which the 
two-dimensional Burgers equations are considered, the 4 in (1 6) and (1 7) represents either u or v, and 

The finite volume method is used to solve (1 7) with the appropriate boundary conditions, which will 
V . V # O .  

Figure 2. A control volume P with six surfaces (e, w, n, s, h and I) and six neighbouring node points (E, W, N, S, H, and L )  
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be specified in each test problem. It involves integrating locally over a finite control volume for time 
step At. Using the divergence theorem, we obtain the following discretized equation: 

where A/ represents again the areas of the cell face f (f = e, w, n or s), and V, is the cell volume. In the 
two-dimensional case in Figure 2, A ,  =yn -ys ,  An =x, - x, and Vp = (xe - x,)(y, -y,). The 
superscript represents the value at the previous time step, and J f  the total flux of 4 across face$ 
For example, 

where JF is convective flux and J," diffusive flux. 
The CD scheme is used to discretize the diffusive terms, and we have 

For the convective flux J," we have 

J,C = [$u]Je = Fe4e. 

The mass flow rate F, is defined in the same way as previously, except the density is unity. The 
generalized form (14) is used to calculate the convective flux J,", and to implement various higher- 
order schemes. For the first-order upwind scheme, 

At the near-boundary points, where sufficient nodes for higher order schemes are not available, FOU 
(equation (22)) is used. 

In the test problems, only the steady-state solution is of interest, which is generally obtained by 
marching the transient solution with a constant time step. For the second test problem, when a 
stretching grid is used, the very small grid size near the boundary gives rise to a very small time step. 
Such a small time step results in an unacceptable convergence rate if a constant time step is used. Since 
only the steady-state solution is of interest, a pseudo-transient approach is used. The time step at each 
point is chosen based on a given Courant number uAt1A.x of 0.1 and diffusion number y4AtlhX2 of 
0.12. The two discretisation numbers are chosen so that the numerical scheme is stable. The method 
greatly improves the convergence to steady-state solution. Since the convergence is rapid, no attempt is 
directed at optimizing the solution parameters. 

4. IMPLEMENTATION FOR NCOMPRESSIBLE FLOWS 

While the explicit method is used for simulating convection-diffusion processes, a semi-implicit like 
method is used for incompressible flows. The above-mentioned higher-order schemes are implemented 
in a three-dimensional code, where the PIS0 (pressure-implicit with splitting of operators) algorithm' 
is used. PIS0 is found to perform better than SIMPLE'* in the test problem. The governing equations 
are solved in a sequential manner. The velocity components are computed from the respective 
momentum equations. A pressure-correction equation, that is derived by manipulating continuity and 
momentum equations, is used to correct the pressure fields at the first stage and then velocity fields to 
satisfy the continuity. The corrected velocities are then used to calculate the coefficients of the 
pressure-correction equation at the second stage and to correct the pressure fields again. In the present 
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implementation of the PISO algorithm, the velocity fields are not corrected at the second stage as in the 
original PIS0 algorithm. The whole process is repeated until a convergent solution is obtained. 

The general three-dimensional unsteady transport equation for a dependent variable 4 in fluid flows 
can be written in Cartesian tensorial form, 

where p is the density, uj the velocity vector with u, v and w components in the directions x~(x), x2@) 
and x&) respectively, and S, the source term. 

As done in (1 S), (23) is integrated locally over a finite control volume and the source term S, is 
linearized as S" + Sp& Using the divergence theorem, we obtain 

J w  + J n  - 

Again, Jf represents the total flux of the variable Cp across face f (f = e, w, n, s, h or I), which contains 
two parts, Jf" the convective flux and Jf" the diffusive flux. The CD scheme is used to discretize the 
diffusive terms, for example, 

where 

If the generalized form of (12) and (14) is directly implemented in (24), after some algebraic 
manipulating, the following discretization equation is obtained: 

The number of neighbouring points N,  the coefficients up, aw, . . . , and the source term co of the 
discretization equation depend on the schemes used. As discussed in the introduction, the deferred 
correction procedure of Khosla and Rubin" is used in the present work. The standard first-order 
upwind scheme (FOU) is used to obtain the coefficient up and a&. Only six neighbouring points are 
involved implicitly. The extra deferred correction term of the higher-order scheme is included 
explicitly in the source term. 

In this method, the net convective fluxes Fede and FW4,  in (1 1) and (14) are expressed as the sum of 
the first-order upwind fluxes (equation (22)) and the deferred correction fluxes, (F4)$ .  

F e 4 e  = ~ P F , +  + + E F ~  + ( F ~ I ? ,  (30) 
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where 

The resulting discretization equation is 

where P=E,  W, N, S, H or L and 

p p  'p 6; + Cdc c=SuVp+-- At (35) 

The coefficients ap and a n b  are obtained from the FOU discretization.18 The extra deferred correction 
source term cdc is 

cdc = -(F4)? + (F&d," - (F#$ + (F$) f  - (F4);fC + ( F 4 ) Y .  (36) 

As can be seen from above derivation, the present implementation method offers flexibility and ease 
for implementing various schemes. For CD, SOU, QUICK and SHYBRID schemes, the only 
difference is the scheme parameter qf. It should be mentioned that if CD is used, qf= 0, which indicates 
there is no need to evaluate Plf and P2f in (32) and (33). 

5. RESULTS OF THE TEST CASE 

5.1. Transport of a scalar tracer by a uniform velocity3eld 

The problem involves convection and diffusion of a two-dimensional scalar field (1 6) with sharp 
gradients. The steady state velocity field is given by u = 1 and v = 1. The inlet boundary condition in 
the well-known Smith-Hutton problem2' is imposed in the present calculation. The scalar displays a 
sharp but continuous change from 0 to 2 along the inlet. The boundary conditions can be summarized 
as 

Cp = 1 + tanh(20x + 10) at y = 0, -1 6 x 6 0, 

4=1-tanh(lO) at x = - l , O < y < l ,  

or x = O , O < y <  1, (37) 

The maximum and minimum values of the solution are 2 and 0 respectively. No exact solution is 
available. However, the solutions on the finest grid using higher-order schemes can be used for 
comparison of accuracy. The main purpose here is to illustrate numerical diffusion of FOU and 
numerical dispersion of those higher-order schemes. The problem was run on a uniform and a non- 
uniform grid consisting of two uniform sections, and each of these were tested for four different grid 
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sizes (Figure 3). The numerical results are summarized in Table I. Eight examples of predicted scalar 
fields using FOU and QUICK are shown in Figure 4. 

On the coarser grids, significant numerical diffusion is evident for FOU and numerical dispersion 
(‘wiggles’) for the higher-order schemes, as is reflected in the maximum and minimum values in Table 
I and scalar fields in Figure 4. As the grid is refined, inaccuracies due to numerical dispersion for 
higher-order schemes approach zero. At the grids 160 x 160 or 120 x 120, the overshoots have 
completely disappeared, and the undershoots are significantly reduced, particularly in the case of 
QUICK where the undershoots are now less than for other higher-order schemes. Due to a very high 
cell Peclet number, SHYBRID gives almost identical results to SOU. In the non-uniform grid solution, 
comparable (almost exact) levels of accuracy are achieved for fewer grid points than for corresponding 

20x20 4 0 x 4 0  80 x 80 160 x 160 

60x60 120 x 120 15 x 15 30 x 30 

Figure 3. Four grid sizes of a uniform grid and a non-uniform grid used for the first test problem 

Figure 4. Predicted scalar fields using FOU (a, b, e, t )  and QUICK (c, d, g, h) on 20 x 20 and 80 x 80 uniform grids 
(a, b, c, d) and 15 x 15 and 60 x 60 non-uniform grids (e, f, g, e, f, g, h) 
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Table I. Numerical results for transport of scalar tracer problem 

Uniform 20 x 20 40 x 40 80 x 80 160 x 160 
Grid Max min Max min Max min Max min 

FOU 1.9723 0 1.9995 0 2.0000 0 2.0000 0 
sou 2.0292 - 0.0361 2.0209 - 0.0267 2.0000 - 0.0039 2.0000 - 0.0015 
QUICK 2.0326 - 0.1725 2.0093 - 0.081 1 2.0000 - 0.0024 2.0000 - 0.0007 
SHYBIUD 2.0292 - 0.0362 2.0209 - 0.0267 2.000 - 0.0039 2.0000 - 0.0015 

30 x 30 60 x 60 120 x 120 Non-Uniform 15 x 15 
Grid Max min Max min Max min Max min 

FOU 1.9723 0 1.9995 0 2.0000 0 2.0000 0 
sou 2.0292 - 0-0288 2.0209 - 0.0251 2-0000 - 0.0039 2.0000 - 0.0016 
QUICK 2.0326 - 0.1765 2.0093 - 0.0806 2.0000 - 0.0024 2.0000 - 0.0007 
SHYBRID 2.0292 - 0.0288 2.0209 - 0.0251 2.0000 - 0.0039 2.0000 - 0.0016 

uniform grids. This is an expected result; the problem is so designed that no variable-variation exists in 
the left half domain. Some blending or flux-limiting approaches can be used to suppress the 
oscillations (‘wiggles’) of these higher-order schemes (e.g. Reference 14). These are not investigated in 
the present work. In smooth incompressible flows, the higher-order schemes can still produce 
oscillation-free solutions as shown in the previous numerical experiences (e.g. Reference 6) and in the 
following three test problems. 

5.2. Heat transport in recirculating flow 

This excellent test problem with an exact solution was presented by Beier et a1.,7 who studied six 
convection discretisation schemes on uniform grids. The problem presents two important flow features 
in practical problems, namely recirculation and a temperature boundary layer. The problem involves a 
recirculating flow in a heated cavity (length 1 and height h) with the upper surface of the cavity being 
adiabatic, and the left and bottom surfaces being defined by a varying temperature profiles. The 
dependent variable 4 in (16) is temperature. The flow is inviscid 
the Schwartz-christoffel transformation, 

u = nsinh(T) 2 c o s ( 3 ,  

v = E c o s h ( 3  2 sin(?). 

and the velocity field is obtained by 

(38) 

(39) 

The exact solution of (1 6) is 

4(r ,  s) = Re[exp(-Pe,$ + A2)erfc(A)], (40) 

where Pel is the half-plane Peclet number, 

A = ,/- + ir. (43) 
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The transformed coordinates 5 and r] are 

< = Ah [ 1 + c o s h ( ~ ) c o s ( ~ ) ] ,  

where A is the decay coefficient of the temperature profile along the left and bottom surface. A Peclet 
number Pe is defined with the maximum velocity in the x-direction in (38). The relationship between 
Pe and Pel can be found in Reference 7. The test performed here uses a Peclet number of 200 in the 
same geometry as in Reference 7. 

The boundary condition aty’h = I is a@ay = 0 and those at other surfaces are defined in the original 
paper. For calculation purposes here, they are derived from the exact solution (40) applied at 
boundaries. The velocity field and exact solution of temperature 4 for Pe = 200 are shown in Figure 5 .  

Three grid configurations each with four different grid sizes are used: a uniform grid, a non-uniform 

Figure 5 .  Velocity field (left) and exact solution of temperature field (right) for the 
second test problem 

(a) 6 x 6 (b) 15 x 15 (c) 30 x 30 

(e) 5 x 5 Q 1 0 x 1 0  (9) 20 x 20 

(d) 60 x 60 

(h) 40 x 40 

Figure 6. Four grid sizes of the two non-uniform grids for the second test problem 
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Figure 7. RMS plots for heat transport in recirculating flow problem 

grid consisting of two uniform sections (non-uniform grid l), and a stretched grid (non-uniform grid 
2); see Figure 6 for the two non-uniform grids. The numerical results are surnmarised in Table 11, 
where the root mean square (rms) error is presented. The results are also plotted in Figure 7 for each 
grid configuration. 

The higher-order schemes are consistently superior to FOU. It is notable that higher-order schemes 
maintain higher than first order accuracy on all non-uniform grids studied here. However, when we 
plot rms error for each scheme separately (not shown) instead of for each grid configuration in Figure 
7, it can be seen that QUICK and SHYBRID on stretched grids perform almost equally badly as with 
uniform grids, particularly on finer grids, suggesting some loss in order of accuracy, as is shown by 
Taylor series expansion. SOU displays significantly less accuracy than SHYBRID and QUICK, 
although it is notably superior to its first-order counterpart. The similarity between QUICK and 
SHYBRID is not surprising considering that the hybrid solution approaches QUICK at moderate 
Peclet numbers. However, it is also notable that SHYBRID does yield a better result to QUICK on the 
finest non-uniform grid 1. Due to the fact that SHYBRID represents the transportive property of the 
flow in a much closer way than QUICK, it is expected that SHYBRID will be superior to QUICK in 
more complex problems. 

Due to stability and convergence considerations, it is necessary to use various time steps at different 
grid points for the stretched grids, and hence it is not possible to draw any significant conclusions from 
a comparison of CPU time between the stretched and the other grids. By comparing CPU times 
required for the first two grids, it can be seen that the non-uniform grid solutions are more efficient. For 
this problem, the flow is inviscid and no velocity boundary layer exists. The thermal boundary layers 
do not result in very severe gradients for the Peclet number of 200 used here. Even though the non- 
uniform grids give better solutions than uniform grids, when the grid is finer, this improvement is very 
small. This highlights the importance and difficulties of choosing a proper grid distribution. 
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Table 11. Numerical results for recirculating flow in a heated cavity problem 

Uniform 10 x 10 20 x 20 40 x 40 80 x 80 
Grid RMS CPU RMS CPU RMS CPU RMS CPU 

Time Time Time Time 

FOU 1.6872E-3 0.98 4.4139E-4 5.00 1.1362E-4 54.26 2.9067E-5 69044 
sou 1.125 1E-3 0.90 1 '6759E-4 5.32 2.3607E-5 56.63 3.3049E-6 750.27 
QUICK 8.3990E-4 0.81 1.1056E-4 5.1 1 1.3519E-5 56.00 2.4017E-6 690.84 
SHYBRID 8.2639E-4 0.75 1.057484 5.55 1.2712E-5 58.09 1.9978E-6 732.37 

Non-Uniform 6 x 6  15 x 15 30 x 30 60 x 60 
Grid RMS CPU RMS CPU RMS CPU RMS CPU 

Time Time Time Time 

FOU 46424E-3 0.3 1 7.0498E-4 344  1.7835E-Q 30.53 4-5834E-5 360-96 
sou 4.4345E-3 0.23 3.5842E-4 1.22 54426E-5 28.77 6.5918E-6 403.28 
QUICK 3,3431E-3 0.23 2.7318E-4 2.43 3.6386E-5 33.09 4.9721E-6 395.56 
SHYBRID 3.5343E-3 0.37 2.6832E-4 1.45 3.3836E-5 32.96 4.7323E-6 405.95 

Non-Uniform 5 x 5  10 x 10 20 x 20 40 x 40 
Grid 2 RMS CPU RMS CPU RMS CPU RMS CPU 

Time Time Time Time 

FOU 6.2903E-3 0.22 1.4547E-3 0.91 3.8689E-4 7.26 1.0275E-4 88.77 
sou 6.4985E-3 0.27 1.0890E-3 0.77 1.6527E-4 7.85 2.2998E-5 93.86 
QUICK 5.92278-3 0.25 9.3392E-4 0.78 1.3296E-4 8.26 1.80168-5 98.46 
SHYBRID 6.99-5E-3 0.3 1 9.9663E-4 0.88 1.3697E-5 9.1 1 1.7680E-5 100.87 

5.3. Two-dimensional Burgers equations 

In the above two test problems, nonlinearities are not present. As a simplified form of the Navier- 
Stokes equations, the Burgers equations serve as a good model for non-linear flow problems. By using 
the Cole-Hopf transformation, Fletche?' constructed an interesting exact solution of the two- 
dimensional Burgers equations. In (16), Cp represents u or v, and y4 represents viscosity v, i.e. 

au au au a2u a2u 
- + u - + v - = v  -+- , 
at ax ay (ax2 v) 
av av av a2v a2v 
- + u - + v - = v  -+- , 
at ax ay (ax2 v> (47) 

The exact solution is 

(49) u = -  
2v[a3 + a4y - ,1a5(e"~-~o) + e-i(x-xo) 1 sin (1Y)l 

[a1 + azx + a3y + am + a5(e4~-*0) + e-l(x-xo)) cos(1y)l ' 

In the test case here, we use an exact solution with a severe internal gradient (Figure S), which is 
generated by the following parameter values, 

a1 = a2 = 1.3 x a3 = a4 = 0, a5 = 1.0, 1 = 25, xo = 1, v = 0.04. (50) 
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Figure 8.  An exact solution for u and v on a non-uniform grid with an 
internal gradient 

Five grid configurations are used, each with four grid sizes, see Figure 9. More than one type of non- 
uniform grid is used in order to assess the influence of grid smoothness on the solution accuracy and 
efficiency. A constant time step is used for all the steady-state solutions. The relative accuracy and 
CPU time spent of each scheme for all the grids are summarised in Table 111, and the rms errors of u- 
component for each scheme are also plotted in Figure 10. 

QUICK is almost consistently the most accurate and FOU is the least accurate, except for the 
coarsest grid. The nature of the solution renders it particularly appropriate for use with non-uniform 
grids. From Table 111, it is clear that higher accuracy is maintained for fewer grid points on non- 
uniform grids, which also results in less CPU time. By plotting the error distribution of the u-solution 
on uniform and non-uniform grids (not shown), it is found as expected that grid refinement by use of 

Figure 9. Four grid sizes of a uniform grid and four non-uniform grids used for the third test problem. The four non-uniform 
grids are referred as non-uniform grid 1, 2, 3, and 4 in the text, where the number represents the grid fineness in the refined 

region. The larger the number, the finer the grid in the refined region 
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Table 111. Numerical results for the two-dimensional Burgers equations 
~~ 

Uniform 10 x 3 20 x 6 40 x 12 80 x 24 
Grid RMSU RMSV RMSU RMSV RMSU RMSV RMSU RMSV 

FOU 6.771E-4 1.744s-3 1.577E-4 3-6318-4 5.21 1E-5 8.31755 1.439E-5 1-969E-5 
sou 6.108E-4 1.895E-3 1.122E-4 2.860E-4 2.855E-5 3.867E-5 6.1 16E-6 4.702E-6 
QUICK 7.145E-4 1.921E-3 1.006E-4 2.863E-4 1.6558-5 3.781E-5 4.704E-6 4.524E-6 
SHYBRID 7.569E-4 1.928E-3 1.247E-4 2.860E-4 1.964E-5 3.774E-5 4.958E-6 4.517E-6 

Non-Uni 6 x 3  12 x 6 24 x 12 48 x 24 
Grid 1 RMSU RMSV RMSU RMSV RMSU RMSV RMSU RMSV 

FOU 1.146E-3 1.783E-3 2.707E-4 4.600E-4 8.779E-5 1.053E-4 2.374E-5 2.490E-5 
sou 1.032E-3 1.949E-3 1.91 2E-4 3.632E-4 4.722E-5 4.907E-5 9.198E-6 6,004E-6 
QUICK 3.291E-3 1.981E-3 1.614E-4 3.661E-4 2.613E-5 4-805E-5 6.602E-5 5.755E-6 
SHYBIUD 3.333E-3 1.991E-3 2.338E-4 3.674E-4 3.171E-5 4.837E-5 7.0858-6 5.797E-6 

Non-Uni 8 x 3  14 x 6 28 x 12 56 x 24 
Grid 2 Rh4SU RMSV RMSU RMSV RMSU RMSV RMSU RMSV 

FOU 1.067E-3 1.994E-3 2.499E-4 4.206E-4 6.6928-5 9.650E-5 1.778E-5 2,281E-5 
sou 9,975E-4 2.173E-3 1.620E-4 3.336E-4 2.832E-5 4.490E-5 6.567E-6 5.464E-6 
QUICK 7.896E-4 2.201E-3 1.058E-4 3.331E-4 1.707E-4 4.406E-5 5.7818-6 5.271E-6 
SHYBRlD 7.182E-4 2.240E-3 1.177E-4 3.335E-4 1.963E-5 4.403E-5 5.901E-6 5.276E-6 

Non-Uni 9 x 3  18 x 6 36 x 12 72 x 24 
Grid 3 RMSU RMSV RMSU RMSV RMSU RMSV RMSU RMSV 

FOU 6.373E-4 1.845E-3 1.758E-4 3.666E-4 4.379E-5 8/41 1E-5 1.188E-5 1.991E-5 
sou 5.515E-4 2-012E-3 8-956E-5 2.92 1E-4 1.569E-5 3-939E-5 5.095s-6 4777E-6 
QUICK 5.140E-4 2.040E-3 6.073E-5 2.901E-4 1.255E-5 3.845E-5 4.979E-6 4.597E-6 
SHYBRID 5.300E-4 2.0518-3 6.378E-5 2.896E-4 1.3 1 1E-5 3.816E-5 5.0248-6 4.549E-6 

Non-Uni 13 x 3 26 x 6 52 x 12 104 x 24 
Grid 4 RMSU RMSV RMSU RMSV RMSU RMSV RMSU Rhlsv 

FOU 4.763E-4 1.494E-3 1.001E-4 3.024E-4 2.53 IE-5 6.945E-5 7.442E-6 1.647E-5 
sou 3.605E-4 1.63 1E-3 3.746E-5 2.384E-4 1.002E-5 3.156E-5 4.247E-6 3.763E-6 
QUICK 3.124E-4 1.651E-3 3.746E-5 2.384E-4 1.002E-5 3-156E-5 4.247E-6 3.763E-6 
SHYBIUD 3-035E-4 3.658E-3 3.777E-5 2.375E-4 1.023E-5 3.130E-5 4.245E-6 3.714E-6 

non-uniform grids reduces the error in the refined region. The grid number in the y-direction is kept 
constant in each grid group. It can be seen in Table 111 that the v-rms error is slightly larger in the non- 
uniform grid 1 than the corresponding uniform grid (It should also be noted that u-rms error is also 
slightly larger), but gradually reduced, when the grid in the large-gradient region in the x-direction is 
refined. This may be due to the fact that u and v are strongly coupled. 

In Figure 10, a downward shift of the rms profile as the grid in the larger-gradient region is refined, 
will indicate a gain in solution accuracy by the use of fewer grid points. For FOU, this is true at a larger 
number of grid points, but not true at a small number of grid points. But for the higher-order schemes 
QUICK and SHYBRID, this is true at a small number of grid points and not true at a large number of 
grid points. For SOU the results are different and complex. With a very large grid aspect ratio 
(xi+l -xi)/(xi -xi - 1) of 0.0625 in non-uniform grid 4, the solution accuracy does not improve 
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Figure 10. RMS plots for (a) FOU, @) SOU, (c) SHYBRID and (d) QUICK 
schemes in computing u of the 2D Burgers equations 

compared to non-uniform grid 3. At very large grid numbers tested, even a grid aspect ratio of 0.25 in 
non-uniform grid 2 does not give any better results for QUICK and SHYBRID. The importance of 
these results can be seen from the fact that in most engineering calculations, coarse grids are generally 
used. The results discussed above imply that non-uniform grid, together with higher-order schemes 
such as QUICK and SHYBRID, can be a useful approach. The advantages of using non-uniform grids 
with FOU and SOU are still present at a smaller number of grid points, but not superior to QUICK and 
SHYBRID. Overall, the use of non-uniform grids in this test problem is very successful and 
encouraging. The detailed analysis of the influence of grid aspect ratios can be expected to provide 
guidance for the behaviour of non-uniform grids applied to real fluid flows. 

5.4. Lid-driven cavity like frow 

This test flow problem, whose exact solution is known, was constructed by Shih et ~ 1 . ~ ~  to assess the 
effects of grid staggering. The flow with artificially designed body forces is qualitatively similar to the 
classical lid-driven cavity flow. The governing equations are 

a u a v  
-+--0, 
ax av 

au au au #U a% ap - + u - + v - = v  -+- -- 
at ax + (ax2 y) ax' 

ap f, av av av a2v a2v 
- + u - + v - = v  -+- 
at ax + (ax2 ayi)-%- (53) 
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where p is pressure and f the body force source term for v-equation. The expression for f and the 
solution pressure p is very lengthy and will not be repeated here. Details can be found in the original 
paper. The boundary conditions for u and v at the top surface (y = I )  are v = 0 and 

u = 16(x4 - 2$ +2) (54) 

and are of Dirichlet type zero at other surfaces. The advantage of these boundary conditions is that 
velocities at the two top comers are zero. 

The exact solutions of u and v are 

u = 8(x4 - 2.2 +S)(4Y - 2y), (55 )  

v = -8(4x3 - 6 2  + 2x)(y4 -9). (56) 

Shih et al." obtained numerical solution only for v = 0.1, since a central difference scheme was used. 
In the present work, a solution is obtained for v = 0.001 for all the schemes tested. The exact solution is 
plotted in Figure 11. 

Two grid configurations are used, a uniform grid and a non-uniform grid consisting two uniform 
sections in the y-direction. An example of a non-uniform grid 40 x 30 and solution by QUICK on that 
grid is shown in Figure 12. The solution rms errors for u, v and aplay are summarised in Table IV. 

Figure I 1. EXXI solution of the lid-driven like flow, which is given by (55 and 56) 

I d 

....................................... ..................................... ...................................... ...................................... 

................................... 
............................... 
.............................. 

. ' ' #  . . . . . . . .  I 
Figure 12. (a) Non-uniform grid 40 x 30; and (b) velocity solution of the fourth test problem by the QUICK scheme on grid 

40 x 30 
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Table Ic! Numerical results for the lid-driven flows 

Uniform FOU QUICK sou SHYBRID 
Grid 

u-RMS 
20 x 20 4.3703E-2 3.03 15E-2 3.3902E-2 3.0594E-2 
40 x 40 2,138 1 E-2 1.367 1 E-2 1.2804E-2 1.4476E-2 
80 x 80 1.4562E-2 9.9503E-3 9.7030E-3 1.0240E-2 

v-RMS 
20 x 20 5.54 14E-2 3.25 13E-2 5.0502E-2 4.0258E-2 
40 x 40 2.9701E-2 1.253 1 E-2 1.3442E-2 1.2821E-2 
80 x 80 1.7149E-2 8.9801E-3 8.84 14E-3 9.2066E-3 

aPl2Y-Ws 
20 x 20 4.7451E-2 4.4325D-2 5.7583E-2 4.6775E-2 
40 x 40 2.8079E-2 2.461 7E-2 2.1302E-2 2.7372E-2 
80 x 80 2.2242E-2 2.0999E-2 2.0347E-2 2.1726E-2 

Non-Uniform FOU QUICK sou SHYBRID 
Grid 

20 x 16 
40 x 30 
80 x 60 

20 x 16 
40 x 30 
80 x 60 

20 x 16 
40 x 30 
80 x 60 

2.9948E-2 
2.3 163E-2 
1.4867E-2 

6.0709E-2 
3.2961E-2 
1.8622E-2 

5.3298E-2 
3.0892E-2 
2.3739E-2 

u-RMS 
3.6796E-2 3.91 65E-2 
1.5942E-2 1.5276E-2 
1.669E-2 1.0956E-2 

v-RMS 
3.8069E-2 5.5368E-2 
1.5052E-2 1.6074E-2 
1.0606E-2 1.0474E-2 

aPl*-RJUs 
5.2529E-2 6.01 80E-2 
2.9482E-2 2.6059E-2 
2.4410E-2 2.3801E-2 

3.693 5E-2 
1.6664E-2 
1.1455E-2 

4.5694E-2 
1.5302E-2 
1.0843E-2 

5.2857E-2 
3.2242E-2 
2.515 1 E-2 

Even though the use of higher-order schemes improves the solution accuracy, the higher-order 
accuracy of SOU, SHYBRID and QUICK is not maintained even on uniform grids. Calculation shows 
that the present implementation of higher-order schemes in the flow code is robust. The solution 
accuracy on non-uniform grids with higher-order schemes is better than that with FOU. It appears that 
QUICK and SOU predict better ap/ay than SHYBRID. The results indicate the complexity of 
numerical prediction in a flow problem. The reason for loss of order of accuracy of higher-order 
schemes is unknown to the authors. It may be hypothesised that this is due to the use of FOU at near- 
boundary points. Application of FOU at near-boundary points in the second and third problems studied 
did not result in a great loss of order of accuracy. The reason that it happens in the flow problem here 
may be due to the elliptic behaviour of pressure. Further investigation will be carried out by using a 
consistent extrapolation method to define variables at external pseudo-nodes. 

6. CONCLUSIONS 

An easy implementation method has been presented for three higher-order schemes on non-uniform 
grids for both convection-diffusion and incompressible flow problems. The implementation method 
involves an application of a generalized scheme formulation. The schemes have been tested on various 
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uniform and non-uniform grid configurations for four problems, in which three have exact solutions 
for accuracy assessment. Overall, higher accuracy is obtained for fewer grid points on non-uniform 
grids. It is confirmed that the order of accuracy of the examined schemes can be maintained if the non- 
uniform grid points are properly chosen to be in small-variation regions of the dependent variables, and 
the grid size aspect ratio is small. The application of a first-order upwind scheme at near-wall points 
does not result in a great loss of order of accuracy for all the convection-diffusion problems, but seems 
to do so for flow problems, which requires M e r  investigation. 
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F 
J 
P 
Pe 
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s4 
S P ,  su 
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u, v 
V 
x ,  Y 

NOMENCLATURE 

coefficient in (34) 
area of the face of the control volume 
coefficient in (34) 
correction factor of the anti-diffusive flux 
diffusion-like term in (27) and (28) 
mass flow rate across the face of the control volume 
convective flux 
pressure 
Peclet number ( = F/D) 
scheme parameter used first in (4) 
source term in (23) 
coefficients in the linearised for of source term S4 
time 
velocity components along xi axes 
velocity components along x and y axes, respectively 
cell volume 
axes of Cartesian coordinate system 

Greek symbols 

4 P geometrical parameters defined in (9) 
74 diffusion coefficient in (1 6) 
r4 diffusion coefficient in (23) 
6 length associated with grid size, (defined in Figure 1) 
V viscosity 
P fluid density 
4 dependent variable 

Subscripts 

e, w, n, s, h, 1 east, west, north, south, high and low 
surfaces of control volume centre at node P 
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E, W, N, S 
EE, WW, NN, S S  
P 

east, west, north and south nodes adjacent to node P 
nodes 2 cells distant from P in east, west, north and south directions 
nodal point to be considered 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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